首页 >> 学术信息 >> 正文

数理学院研究生论坛:Geometric singular approach to Poisson-Nernst-Planck systems for ionic flows through membrane channels

发布日期:2018/12/25      点击:[]

报告题目: Geometric singular approach to Poisson-Nernst-Planck systems for ionic flows through membrane cha nnels

报告人:张明吉

时间: 2018年12月27日周四上午10:30-11:20

地点:崂山校区数理学院(D2楼)210会议室

报告简介: 

  In this talk, a brief description of ion channels and the background of Poisson-Nernst-Planck (PNP) models are provided. Focusing on the key structure of ion channels, a one-dimensional PNP model is derived, from which qualitative properties of ionic flows can be studied in great details. The main idea of Geometric Singular Perturbation Theory is introduced, which is the main tool to study the PNP system. As an example, the theory is applied to a simple case of Poisson-Nernst-Planck system with two ion species, one positively charged and one negatively charged. Finally, interesting research topics and some obtained results related to ion channel problems are discussed.

报告人简介:

 张明吉,教授,博士生导师,目前就职于美国新墨西哥矿业理工学院。2013年毕业于美国堪萨斯大学,获理学博士学位; 2013-2015年跟随著名数学家 Peter W. Bates 做博士 后研究。研究方向为非线性动力系统,微分方程及其应用,特别是在离子通道问题 (ion channel problems) 和发展生物学 (developmental biology)中的应用。在离子通道问题研 究中, 特别是对离子流的动力学行为的研究,做出了重要贡献,得到同行专家的高度认可。 已在 《J. Differential Equations》,《J. Dynamics and Differential Equations》, 《SIAM J. Applied Mathematics》, 《SIAM J. Applied Dynamical Systems》,等国际顶级期刊发表论文20余篇。美国《数学评论》评论员,国际杂志《SCIREA Journal of Mathematics》的编辑,《Computational Mathematical Biophysics》的客座编辑,《SIAM J. Applied Mathematics》,《Discrete and Continuous Dynamical Systems-A》,《J. Computational and Applied Mathematics》等10余杂志的特邀审稿人。