蔡虹

发布日期:2019/04/08      点击:[]

姓名

蔡虹

      undefined

   性别

出生年月

19894

职称

讲师

学历

  (学位)

博士研究生

   所属学院

 

数理学院

   导师  类别

 

硕士生导师

招生专业

 

数学

研究方向

偏微分方程及其应用

联系方式

caihong19890418@163.com

个人简历(包括近期科研项目)

蔡虹,博士,特聘副教授,主要从事流体力学中的非线性偏微分方程组的数学理论研究,20176月毕业于厦门大学,获理学博士学位,师从谭忠教授。2017年获得“福建省优秀博士学位论文”。20159月到美国佐治亚理工大学访学一年,合作导师为潘荣华教授。迄今,在Arch.   Rational Mech. Anal., J.Math.Pures.Appl.等国内外著名数学期刊共发表17SCI论文;主持国家自然科学基金青年项目1项,山东省自然科学基金1项,青岛科技大学人才基金1项,参与国家自然科学基金面上项目1项。

 

主持的科研项目情况

·             国家自然科学基金,No.11801295,起止时间:2019.01-2021.12

·             山东省自然科学基金,No. ZR2018BA008,起止时间:2018.03-   2020.12

 

近期发表的主要SCI收录科研论文

  1. H. CaiG. Chen, Y. Du, Uniqueness and   regularity of conservative solution to a wave system modeling nematic liquid   crystal. J. Math.   Pures Appl. 117 (2018), 185-220. 

  2. H. CaiG.   Chen, R.M. Chen, Y. Shen, Lipschitz metric for the Novikov equation. Arch.   Ration. Mech. Anal. 229 (2018),no.   3, 1091-1137.

  3. H. Cai, T. Zhong, Lipschitz metric   for conservative solutions of the modified two component Camassa-Holm   system. Z. Angew.   Math. Phys. 69 (2018), no.   4, Art. 98, 30 pp. 

  4. H. Cai, T. Zhong, Uniqueness of   conservative solutions to the modified two component Camassa–Holm system via   characteristics. J. Math.   Anal. Appl. 461 (2018), no.   2, 1067-083.

  5. H. Cai, T. Zhong, Stability of   stationary solutions to the compressible bipolar Euler Poisson equations. Discrete   Contin. Dyn. Syst. 37 (2017),   no. 9, 4677-4696.

  6. H. CaiG. Chen, Y. Shen, Z. Tan, Generic   regularity and Lipschitz metric for the Hunter–Saxton type equations. J.   Differential Equations 262 (2017),   no. 2, 1023-1063.

  7. H. Cai, T. Zhong, Time periodic   solutions to the compressible Navier-Stokes-Poisson system with damping. Commun.   Math. Sci. 15 (2017),   no. 3, 789-812.

  8. H. Cai, T. Zhong, Asymptotic stability   of stationary solutions to the compressible bipolar Navier–Stokes–Poisson   equations, Math. Meth. Appl. Sci.40 (2017), no. 12, 4493-4513.

  9. H. Cai, G. Chen, Y. Shen, Lipschitz   metric for conservative solutions of the two-component Camassa–Holm system. Z. Angew.   Math. Phys. 68 (2017),   no. 1, 68:5.

  10. H. Cai, T. Zhong, Existence and   stability of stationary solutions to the compressible Navier -Stokes-Poisson   equations. Nonlinear   Anal. Real World Appl. 32 (2016), 260-293.

  11. H. Cai, T. Zhong, Time periodic   solutions to the three-dimensional equations of compressible   magnetohydrodynamic flows. Discrete   Contin. Dyn. Syst. 36 (2016), no.   4, 1847-1868.

  12. H. CaiT. Zhong, Q. Xu, Time   periodic solutions to Navier-Stokes-Korteweg system with friction. Discrete   Contin. Dyn. Syst. 36 (2016), no.   2, 611-629.

  13. H. CaiT. Zhong, Weak time-periodic   solutions to the compressible Navier Stokes Poisson equations. Commun.   Math. Sci. 13 (2015), no.   6, 1515-1540.

  14. H. CaiT. Zhong, Periodic solutions to   the compressible magnetohydrodynamic equations in a periodic domain. J. Math.   Anal. Appl. 426 (2015), no.   1, 172-193. 

  15. H. CaiT. Zhong, Q. Xu, Time periodic   solutions of the non-isentropic compressible fluid models of Korteweg type. Kinet.   Relat. Models 8 (2015), no.   1, 29-51. 

 

 

上一篇:翟发辉

下一篇: 王琳琳