刘志卿,硕士生导师,2020年毕业于中国海洋大学,获博士学位。主要从事数据驱动控制、迭代学习控制、非线性偏微分方程等方面的研究。在本领域重要国际期刊和会议上发表学术论文10余篇,主持山东省自然科学基金项目1项,参与国家自然科学基金项目2项。 近5年发表的主要学术论文: [1] Zhiqing Liu, Ronghu Chi*, Yang Liu, Biao Huang.Data-driven robust finite-iteration learning control for MIMO nonrepetitive uncertain systems. IEEE Transactions on Cybernetics, 2024, DOI: 10.1109/TCYB.2024.3398717 [2] Mengyuan Zhang, Zhiqing Liu*, Xinli Zhang. Well-posedness and asymptotic behavior for a p-biharmonic pseudo-parabolic equation with logarithmic nonlinearity of the gradient type. Mathematische Nachrichten, 2024, 297(2): 525-548. [3] Zhiqing Liu, Zhong Bo Fang*. On a singular parabolic p-biharmonic equation with logarithmic nonlinearity. Nonlinear Analysis: Real World Applications, 2023, 70: 103780. [4] Zhiqing Liu, Zhong Bo Fang*. Global well-posedness and optimal decay rates for a transmission problem of viscoelastic wave equations with degenerate nonlocal damping. Zeitschrift für Angewandte Mathematik und Physik, 2023, 74: 51. [5] Zhiqing Liu, Zhong Bo Fang*. A new general decay for a transmission problem of viscoelastic Timoshenko systems. Mathematische Nachrichten, 2023, 296(5): 1997-2023. [6] Zhiqing Liu, Zhong Bo Fang*. Well-posedness and asymptotic behavior for a pseudo- parabolic equation involving p-biharmonic operator and logarithmic nonlinearity. Taiwanese Journal of Mathematics, 2023, 27(3): 487-523. [7] Zhiqing Liu, Zhong Bo Fang*. Optimal decay for a wave transmission problem with fading memory. Applicable Analysis, 2022, 101(6): 1984-2007. [8] Zhiqing Liu, Zhong Bo Fang*. The long-time stability of solutions for intermittently controlled viscoelastic wave equations with memory terms. Applied Mathematics and Optimization, 2021, 83: 1991-2016. [9] Zhiqing Liu, Zhong Bo Fang*. Global solvability and general decay of a transmission problem for Kirchhoff-type wave equations with nonlinear damping and delay term. Communications on Pure and Applied Analysis, 2020, 19(2): 941-966. [10] Zhiqing Liu, Zhong Bo Fang*. The global solvability and asymptotic behavior of a transmission problem for Kirchhoff-type wave equations with memory source on the boundary. Mathematical Methods in the Applied Sciences, 2019, 42(18): 6284-6300. |