教师信息
当前位置: 首页 >> 师资队伍 >> 教师信息 >> 正文

刘志卿

日期:2024-08-29 点击数: 作者: 来源:

性别


   

出生年月

1992.10

职务/职称

/中级

所属部门

数理学院

导师类别

硕士生导师

招生专业

数学

研究方向

数据驱动控制、迭代学习控制、非线性偏微分方程

联系方式

Lzhiqing1005@163.com

个人简介

刘志卿,硕士生导师,2020年毕业于中国海洋大学,获博士学位。主要从事数据驱动控制、迭代学习控制、非线性偏微分方程等方面的研究。在本领域重要国际期刊和会议上发表学术论文10余篇,主持山东省自然科学基金项目1项,参与国家自然科学基金项目2项。

5年发表的主要学术论文:

[1] Zhiqing Liu, Ronghu Chi*, Yang   Liu, Biao Huang.Data-driven robust finite-iteration learning control for MIMO   nonrepetitive uncertain systems. IEEE Transactions on Cybernetics, 2024, DOI:   10.1109/TCYB.2024.3398717

[2] Mengyuan Zhang, Zhiqing   Liu*, Xinli Zhang. Well-posedness and asymptotic behavior for a   p-biharmonic pseudo-parabolic equation with logarithmic nonlinearity of the   gradient type. Mathematische Nachrichten, 2024, 297(2): 525-548.

[3] Zhiqing Liu, Zhong Bo Fang*. On a   singular parabolic p-biharmonic equation with logarithmic nonlinearity.   Nonlinear Analysis: Real World Applications, 2023, 70: 103780.

[4] Zhiqing Liu, Zhong Bo Fang*.   Global well-posedness and optimal decay rates for a transmission problem of   viscoelastic wave equations with degenerate nonlocal damping. Zeitschrift für   Angewandte Mathematik und Physik, 2023, 74: 51.

[5] Zhiqing Liu, Zhong Bo Fang*. A   new general decay for a transmission problem of viscoelastic Timoshenko   systems. Mathematische Nachrichten, 2023, 296(5): 1997-2023.

[6] Zhiqing Liu, Zhong Bo Fang*.   Well-posedness and asymptotic behavior for a pseudo- parabolic equation   involving p-biharmonic operator and logarithmic nonlinearity. Taiwanese   Journal of Mathematics, 2023, 27(3): 487-523.

[7] Zhiqing Liu, Zhong Bo Fang*.   Optimal decay for a wave transmission problem with fading memory. Applicable   Analysis, 2022, 101(6): 1984-2007.

[8] Zhiqing Liu, Zhong Bo Fang*. The   long-time stability of solutions for intermittently controlled viscoelastic   wave equations with memory terms. Applied Mathematics and Optimization, 2021,   83: 1991-2016.

[9] Zhiqing Liu, Zhong Bo Fang*.   Global solvability and general decay of a transmission problem for   Kirchhoff-type wave equations with nonlinear damping and delay term.   Communications on Pure and Applied Analysis, 2020, 19(2): 941-966.

[10] Zhiqing Liu, Zhong Bo Fang*. The   global solvability and asymptotic behavior of a transmission problem for   Kirchhoff-type wave equations with memory source on the boundary.   Mathematical Methods in the Applied Sciences, 2019, 42(18): 6284-6300.



地址:山东省青岛市崂山区松岭路99号    邮编:266061 

青岛科技大学数理学院 电话:0532-88958923  

Copyright 2023@数理学院—青岛科技大学版权所有